A fa fizikai jellemzői - II. rész
Mechanikai tulajdonságok
Mechanikai tulajdonságok alatt azokat a jellemzőket értjük, melyek a külső hatásokkal és erőkkel szemben fellépnek. Ezek a tulajdonságok befolyásolják a faanyag felhasználhatóságát. Fontos tudni, hogy a faanyag széles körű felhasználását az teszi lehetővé, hogy bár a sűrűsége aránylag alacsony mechanikai tulajdonságai nagyon kedvezőek. A mechanikai tulajdonságok közé sorolhatjuk a rugalmassági és szilárdsági jellemzőket.
Rugalmasság
A rugalmasság vagy más néven flexibilitás a szilárd testekre jellemző mechanikai tulajdonság. Megmutatja, hogy a külső hatás megszűnése után az anyag képes e visszanyerni az alakját és térfogatát. A fa rugalmas anyag, ezért alkalmas különféle eszközök, szerkezetek készítésére. A faanyagban a külső erők hatására belső erők ébrednek ezeket az erőket egyszerűen igénybevételnek szokás nevezni. Ezek az igénybevételek lehetnek időben és felületegységen állandóak, ekkor statikus igénybevételről beszélünk és lehetnek időben és felületegységen is változóak ekkor az igénybevétel dinamikus. Egyes szerkezeteket érhetik egyszerre statikus és dinamikus igénybevételek is.
A flexibilis anyagok minden esetben elszenvednek valamilyen alakváltozást a különböző erők hatására, de ezek megszűnésekor általában visszanyerik kiindulási alakjukat. Ha azonban ezeknek az erőknek a hatására létrejövő terhelés nagyobb, mint a fa rugalmassága által megengedett, akkor az alakváltozás maradandó, és végleges, vagy akár roncsolódás is bekövetkezhet.
A különböző fafajok rugalmassága nem egyforma, ezért felhasználhatóságuk is változó. A legrugalmasabbak különleges szerkezetekben is alkalmazhatóak. A rugalmasság ezen kívül függ még a fa korától, a sűrűségtől a nedvességtartalomtól, az anatómiai iránytól. A rugalmasságot ideiglenesen –például gőzöléssel- egy időre meg lehet szüntetni ez által kis erővel maradandó alakváltozás idézhető elő, melyet az anyag a lehűlés után is megtart, rugalmasságát pedig visszanyeri.
Szilárdság
A szilárd anyagokban fellépő igénybevételek - a külső erők ellen fellépő belső erőkfeszültséget eredményeznek. Ezek a feszültségek az anyag keresztmetszetén számíthatóak ki. A faanyagban terhelés hatására fellépő maximális feszültséget szilárdságnak nevezzük. A szilárdság azt mutatja meg, hogy mennyire terhelhető egy anyag, roncsolódás és tönkremenetel nélkül. A gyakorlati felhasználás során mindig a tervezett igénybevétel alapján határozzuk meg a teherviselő szerkezetek és elemek elkészítésére használandó fatípusokat és alkalmas keresztmetszeteket. Mindez az egyes fafajok szilárdsági jellemzőinek alapján történhet. Azt a módszert, mellyel kiszámoljuk az elemek és szerkezetek terhelhetőségének a mértékét méretezésnek nevezzük.
A szilárdságot a rugalmassághoz hasonlóan befolyásolja, hogy a fa nem egynemű anyag. Az egyes fafajok sajátságos jellemzői illetve a szöveti, fizikai adottságai együttesen alakítják az adott faj szilárdsági tulajdonságait. Emellett a külső környezeti hatások, mint a hőmérséklet a páratartalom és az igénybevétel hossza is jelentős szilárdsági paraméterek.
(kép: Orsós Jenő)
Faanyagot érő terhelés lehet húzóerő, melyre a húzó vagy szakítószilárdság felel. Ez az igénybevétel létrejöhet a hossztengely mentén vagy arra merőlegesen is. Ez a fajta igénybevétel fánál ritkán fordul elő önmagában, azonban más erők hatására vagy különböző ipari folyamatok során felléphet. Nyomó erők hatására nyomószilárdság alakul ki. Faszerkezeteknél ez a fajta terhelés, már gyakrabban fordul elő, főként szálirányban, néhány esetben azonban a vízszintesen fektetett elemeknél szálirányra merőlegesen is jelentkezik. A szilárdsági jellemzők közül leggyakrabban a hajlítószilárdsággal találkozhatunk. Hajlítószilárdságról abban az esetben beszélhetünk, amikor a két végpontján feltámasztott faelemet két különböző és ellentétes irányú terhelés éri. A két terhelés a keresztmetszetben nyomó és húzófeszültséget eredményez.
Keménységi fokozat | Bütü-irányban | Szálirányban | Fafajok |
Nagyon lágy | 10-40 | 5-20 | Fűz, hárs |
Lágy/Puha | 20-60 | 10-30 | Luc- , vörös- és erdeifenyő |
Közép kemény | 40-65 | 20-40 | Hegyi juhar |
Kemény | 60-100 | 30-60 | Akác, bükk, tölgy |
Nagyon kemény | 100-130 | 50-80 | Bukszus, amerikai cseresznye |
Rendkívül (csont) kemény | 120-200 | 70-140 | Pockafa, hickory |
Nyíró erők hatására a faanyag részei egy képzeletbeli vonal mentén –melyet nyírt felületnek nevezünk- eltolódnak egymáson, ennek ellenállásaként létrejövő nyírószilárdság igyekszik ezt megakadályozni. A nyírószilárdság könnyebben kialakul a hossztengelyre merőlegesen így érdemes ebben az irányban kialakítani a szerkezeteket. A repedések is elősegítik kialakulását, így különös odafigyelést igényel a faanyag kiválasztása és megmunkálása.
Az utolsó szilárdsági jellemző a csavarószilárdság, mely az anyagra ható forgatónyomaték hatására jelentkezik. Ez a jelenség a faszerkezetnél csak elvétve figyelhető meg.
Felhasznált irodalom:
TASKOVICS P, Faipari anyagismeret, Műszaki Könyvkiadó, Budapest, 2004
VERES R.- SZERÉNYI I.- BÁRSONY I., Faszerkezetek építése I., Szega Books Kft., Pécs, 2009
Forrás:
Rubint Barbara- Sztányi Róbert: Fa- a természetes építőanyag
Debreceni Műszaki Közlemények 2014/1 (HU ISSN 2060-6869)
Tetszett a cikk?
Cikkajánló
Egyetemi hírek – 2024. november
A Soproni Egyetem 2024. novemberi hírei
Az Isteni Lélek sziporkái
Gyenes Tamás fafaragó népi iparművész beszél munkáiról.
Újdonságok a Foresttől
Bemutatkozik a VIBO új termékcsaládja, érkezik a HOME BOX 45 mm-es golyós fiókcsúszók új generációja, moduláris fiókrendező, egyszerű sablon a pontos jelöléshez és meg&ea...